
Captain Hindsight: An Autonomous
Surface Vessel

Daniel Pickem ∗ David Morioniti ∗ Chris Taylor ∗

Santiago Balestrini-Robinson ∗ Dimitri Mavris ∗

∗ Georgia Institute of Technology, Atlanta, GA 30332 USA,
{daniel.pickem, ctaylor9, dmorionit3, sanbales}@gatech.edu

Abstract: For the third consecutive year, the Georgia Tech Marine Robotics Group redesigned
its autonomous surface vessel (ASV) entry to the AUVSI RoboBoat Competition.Using a
trimaran design for stability and speed, new and improved sensors including a tilting LIDAR,
an IMU, a GPS, and stereo cameras, the new design is capable of performing each mission.
The ASV employs state-of-the-art algorithms to produce a highly capable and robust system.
Algorithms include Kalman filtering for position and velocity estimation, a hybrid reactive-
deliberative behavior-based control strategy, advanced point cloud generation, segmentation,
and recognition algorithms, as well as stereoscopic vision.

1. MECHANICAL DESIGN

A new vehicle was created by the 2012 Georgia Tech
AUVSI RoboBoat team building on previous experience to
leverage existing advantages and address lingering issues.
A new hull was built, maintaining the trimaran configu-
ration while increasing displacement. This change reduces
the overall drag of the vehicle and improves handling. The
electronics box was completely redesigned to emphasize
safety, reliability, and simplicity. The configuration of the
hardware and power systems was updated at the same
time to reduce complexity and clutter inside the box. The
sensors and electronics are mounted to the main hull to
maximize functionality. The vehicle has been thoroughly
tested over the past semester and behaves as predicted by
the initial analysis.

1.1 Hull Design

A trimaran hull design (see Figure 1(a)) was selected by
last years team for the 2011 entry, to replace a heavy twin-
pontoon design from 2010 (see Figure 1(b)). The selection
was made because of the advantages that a trimaran
can have over competing mono- and catamaran designs.
Each option was qualitatively evaluated based on three
criteria: weight, simplicity, maneuverability, speed, and
stability. A monohull or trimaran has less structure than
comparable twin-pontoon designs, and thus less weight.
Many of the twin-pontoon teams in the competition use
solid fiberglassed foam or heavy plastic for the pontoons,
connected with plywood or aluminum bars. A trimaran
can be hollow and requires very little structure to connect
the pontoons. Pontooned designs, both twin- and tri-,
provide superior stability in roll versus monohulls, and
the overall design improves straight line tracking and
performance. The combination of advantages that is found
in the trimaran design made it the clear choice. Last years
design decisions resulted in one of the lightest and best
performing vehicles at the competition, and was key to
our success. The same hull configuration was kept for this

year, but redesigned to reflect some of the lessons learned.
For instance, to minimize drag the draft of the vehicle
should be such that the pontoons touch the water only to
provide stability, not buoyancy. The hull was also designed
with prior knowledge of the various sensors and electronics
that the vehicle would be required to carry, so the design
and configuration could be developed together.
Paramarine 1 , a ship and submarine design software, was
used to design the hull based on the expected weight of the
vehicle and the desired performance. This program allows
us to accurately analyze the stability and the buoyancy of
the vehicle without the need to build a prototype. Figure
2(b) shows the GZ Curve for the design as generated by
Paramarine (see Figure 2(a)). The results indicated that
the design is extremely stable and can recover from a
60 degree heel. The Paramarine analysis allowed us to
optimize the freeboard of the vehicle to reduce the above-
water profile in order to reduce the effect of wind on the
craft. The resulting vehicle is three feet wide and just over
four feet long, emphasizing the teams focus on weight: the
vehicle is only as large as it needs to be.
Foam sections of the hull were cut with a waterjet and
assembled around laser-cut plywood bulkheads. The entire
assembly was fiberglassed and then the foam was removed
leaving the bulkheads and shell in place. A gunwale was
attached to provide stiffness along the top edge, and the
decking was laser-cut out of thin luan plywood ensuring
precise fit to the hull. The pontoons were shaped from
foam similar to the hull sections, and mounted to an
aluminum frame. The aluminum frame attaches to the
main hull via a small rail, allowing for the center of
buoyancy to be easily adjusted. Four Seabotix thrusters
are mounted to the bottom of the hull for propulsion. The
finished main hull is shown in Figure 12.

1.2 Electronics Box

The electronics box was redesigned with an emphasis on
simplicity and reliability. The layout of the box last year

1 http://www2.qinetiq.com/home grc/products/paramarine.html



Georgia Institute of Technology Aerospace Systems Design Laboratory

(a) 2010 twin-pontoon design (b) 2011 trimaran design

Fig. 1. Georgia Tech MRG entry for 2010 and 2011

(a) 3D model of the trimaran design (b) GZ curve

Fig. 2. Paramarine model of the 2012 hull and GZ curve

disorganized and produced through an ad-hoc process,
shown in Figure 5(a), and could have led to significant
mistakes or lost hardware. The team took two approaches
towards addressing this issue. The first approach is to
build a larger box, providing more room for components,
better access to wires, and a cleaner layout. Component
layout and wire paths were planned out in advance, and

Fig. 3. Finished main hull

then the box was constructed around the configuration.
This method relaxes the normal constraints of attempting
to fit fixed-size components into a highly constrained
space. The second approach is to reduce the number and
lengths of wires that are required (see Figure 5(b)). This
was achieved through a modular structured configuration
based around the Deutsches Institut für Normung (DIN)

Fig. 4. DIN rail setup of this years electronics box

Georgia Tech ASDL 2



Georgia Institute of Technology Aerospace Systems Design Laboratory

standard (see Figure 4). This method uses plastic terminal
blocks that link forming circuits. The terminal blocks are
all insulated and protected against shorts. These blocks
are mounted on a common rail and secured in place. This
structured layout supports the design process and allows
for the flexibility to expand and adjust the configuration
over time.

1.3 Electrical Design

Utilizing the DIN rail system for connecting components
drives the design for configuring power and data connec-
tions to all the components. The main focus of the team
during this process was on reliability, safety, and simplicity.
Components should be protected against shorts by any-
thing from water to a dropped tool. Wires and connections
should stay secure while working on, transporting, and
running the vehicle. The boat electronics are divided into
two separate systems, propulsion and sensors. Each system
is powered from a dedicated battery to prevent power
surges, and to allow R/C control over the vehicle even if
the sensors or computer are offline. The propulsion system
is powered from a six-cell, 5000 milliamp-hour lithium
polymer (LiPo) battery, while the sensors are powered
from a four-cell 5000 milliamp-hour LiPo battery. The
use of LiPo batteries reduces the weight and size of the
vehicle while providing the necessary power requirements.
A simplified power diagram is shown in Figure 6.

1.4 System Assembly

The finished electronics box sits inside the frame that
connects the pontoons to the main hull. This attachment
provides additional stiffness to the frame, and allows the
box to shift with the frame to adjust center of mass and
pitch. Two cameras for stereo vision mount to the corners
of the frame, maintaining a set distance and maximizing
depth perception at farther distances. The water pump
sits behind the box, attached to the same rail, and the
nozzle is mounted to an adjustable plate so that the angle
can be changed for accuracy. The 3D LIDAR mount sits
at the nose of the vehicle to provide an unobstructed view
forward. The IMU mounts just aft of the LIDAR. The
temperature probe is attached to the tilting LIDAR to
allow the probe to be pointed at the Hot Suite. Finally,
the lid of the box is actually a solar panel that provides
all of the power to run the cooling fans, preventing the
laptop from overheating. The solar panel generates enough
power to also run both the IMU and GPS. However for

Fig. 6. Power diagram for propulsion and main sensor
systems. Laptop operates from its own battery.

overall system reliability during the competition those
components will be connected to the batteries. The fully
assembled boat is shown in Figure 7.

2. SOFTWARE ARCHITECTURE

This year, our boat’s entire software architecture is based
on the Robotic Operating System (or ROS, Quigley et al.
[2009]) and Gazebo (Koenig and Howard [2004]), a 3D
simulator. Both of these frameworks are open-source and
are supported by a large and growing community offering a
variety of packages. ROS seamlessly integrates Gazebo as
well as external libraries like the OpenCV computer vision
library 2 , the PCL point cloud library 3 , and the ODE
dynamics engine for simulation. It defines a decentralized
architecture based on message passing between individual
modules (also called nodes). The biggest advantage of ROS
though is the straightforward switch between simulation
and real hardware. All that has to be changed are the
drivers supplying the sensory inputs, i.e. whether the
sensor data is published by Gazebo or by real hardware
sensors. ROS itself and all modules that process sensor
data are agnostic to the underlying low-level driver ar-
chitecture meaning that once sensor data is published in
the form of ROS messages, all higher software layers can
use said data and are not concerned with whether the
data was created by a simulation or by physical sensors.
The hardware abstraction layers in the form of drivers is
therefore completely transparent to all higher level layers.
The only purpose of hardware drivers is to read data from
sensors and publish that data as ROS messages.

2.1 Communication - Internal and External

All modules or nodes as they are called in ROS run
as separate processes that communicate with each other
via ROS’s message passing architecture. Only one central
instance is required that coordinates the message passing.
This process is called the ROS master node and is on
the boat’s laptop. Every node registers with the ROS
master and can then participate in message passing - either
passively as a subscriber or actively as a publisher. Each

2 http://opencv.willowgarage.com/
3 http://pointclouds.org/

Fig. 7. Completely assembled boat.

Georgia Tech ASDL 3



Georgia Institute of Technology Aerospace Systems Design Laboratory

(a) Layout of electronics box from 2011 (b) Layout of this years electronics box

Fig. 5. Comparison of last year’s and this year’s electronics boxes

message is strongly typed meaning that only messages con-
taining a specific data structure can be published on each
topic whereas a topic is the identifying string describing
a message stream. Internal (on the boat’s laptop and all
its sensors and subsystems) and external communication
(with the ground station) are fully identical, where each
module is implemented as a ROS node that subscribes to
the desired topics. In a networked ROS setup, it does not
matter whether a node is executed locally on the boat
or on any other machine connected to the same network.
Last year’s architecture used shared memory, mutexes, and
locks. These were replaced with message passing and call-
back functions. A node can subscribe to a topic and define
a callback function that is called every time a new message
is published on that topic. Therefore, the system operates
fully asynchronously. In addition to the networked ROS
configuration, we have set up a remote desktop that gives
the ground station full access to the boat’s laptop via a
Wifi connection, i.e. a wireless bridge between the boat’s
and the groundstation’s wireless router. Therefore, we can
remotely restart individual nodes, reprogram and recom-
pile them directly on the boat.

2.2 Drivers

Last year’s drivers were written utilizing the cross-
platform Boost Asynchronous Input/Output and Boost
Thread libraries that is fully supported by ROS. For
this year’s competition we ported all of these drivers to
support the ROS architecture. Since ROS integrates the
Boost libraries, no major changes to most of the drivers
were required. Only the GPS driver underwent a major
rewriting to comply with ROS. Additionally, as a result
of switching our motor controllers we had to implement a
driver that interfaces with the servo controller that in turn
controls these controllers. The servo controller driver was
implemented in C++ based on the original C# implemen-
tation and integrated into ROS. Another innovation on the
hardware side - the tilting LIDAR of this year’s boat that
is controlled by a digital Dynamixel AX12 servo - required
us to implement a driver for this type of servo as well.

2.3 Simulation Environment

Most of our software development had to happen in par-
allel to the building of the boat. Before an actual test on
the real hardware could take place, we simulated the boat,
its sensors, and dynamics in the 3D simulator Gazebo.
Gazebo is integrated into ROS and seamlessly hooks into
ROS’s message passing architecture allowing for simple
interfacing with all our code.
One of the biggest advantages of this ROS-Gazebo setup
is the fact that it allows for simple switching from simu-
lation to real hardware. ROS is designed with the goal of
minimizing the gap between simulation and real hardware.
Therefore, the only modules that have to be changed
are the drivers that feed sensor data into our ROS-based
software architecture. ROS itself only defines an interface
to feed sensor data into the system, the underlying sensors
and their hardware abstraction are fully hidden from ROS.
Gazebo not only simulates physical properties of intercon-
nected rigid bodies, such as friction, gravity, mass, etc. but
also generates sensor data including GPS and IMU data
and camera image streams. This setup allowed us to test
every module of our system architecture for the boat in
simulation before deploying it on the boat. We were able to
test code for position and velocity estimation and control
but also all behaviors outlined in Section 3.2 including
obstacle avoidance, global waypoints, blob tracking and

Fig. 8. Gazebo’s simulation environment.

Georgia Tech ASDL 4



Georgia Institute of Technology Aerospace Systems Design Laboratory

Fig. 9. Groundstation

even template matching and point cloud generation and
segmentation. An example of a simulated buoy channel in
Gazebo is shown Figure 8.

2.4 Ground Station

In order to control, monitor, and debug the boat through-
out the development process and also in the deployment
phase, we have developed a variety of visualization and
control tools.

Monitoring Our webbrowser-based ground station fea-
tures a fully integrated webserver, a ROS-interface, WebGL-
based 3D visualization of LIDAR data and detected ob-
jects, as well as a Google Map overlay that allows us to
drop GPS waypoints via mouse click. It interfaces with the
ROS master node that runs on the boat by subscribing
to the published topics and visualizes the data in any
webbrowser supporting JavaScript and WebGL. This is
also one of its main advantages and design motivations
as it can be viewed from any device with a browser, even
smartphones (see Fig. 9).

Controlling The control center is meant to complement
the ground station in that it allows precise control over the
boat, down to the level of issuing single motor commands.
It allows the remote controlling of the robot via ROS and a
networked setup between the boats laptop and any laptop
on the shore that is connected to the same network. As
Fig. 10 shows, one can de-/activate individual behaviors,
set the boat into a specific mission mode, set local and
global waypoints, and control the watergun. Additionally
it shows the status of all connected sensors. The control
center is implemented in C++ and makes use of the Qt
library. Like any other node it subscribes directly to the
topics and services published by the ROS master node
running on the boat and utilizes ROS’s message passing
architecture.

Debugging For debugging purposes we have also im-
plemented what we call the vote visualizer that shows
the combined vote matrix and the current local target
position that the DAMN arbiter outputs (see Section 3.2).
In combination with the control center, this handy tool
allows for the debugging of individual behaviors or any
combination of behaviors (see Fig. 14). The vote visualizer
is a C++ based ROS node that uses OpenCV’s drawing
functions.

3. SYSTEM ARCHITECTURE

The boat’s system architecture resembles the Sense-Think-
Act paradigm with an additional behavioral control aspect
(see Brooks [1986]). In the literature this is commonly
referred to as Hybrid Reactive-Deliberative Control (see
Bekey [2005]). In the Sense-Think-Act paradigm, each of
these three fundamental stages feeds data into the next.
Therefore, sensor data acquisition (see 3.1), processing
(see 3.2), and actuation (see 3.3) are done sequentially.
Yet the processing stage (or thinking stage) runs multiple
behaviors in parallel, where each behavior (e.g. obstacle
avoidance, hold heading, channel navigation, etc.) outputs
a local target position preference in the form of a vote ma-
trix. All behaviors’ votes are then fused in the Distributed
Architecture for Mobile Navigation (DAMN) arbiter (see
Section 3.2 and Rosenblatt [1997]) and fed into the acting
stage that consists of the position and velocity controller
as well as the actual thruster motors.

As can be seen in Fig. 11, our main focus this year
lies in sensor data acquisition and processing, all part
of the sensing stage. Unlike last year, we use a tilting
laser range finder and stereo cameras to compute point
clouds containing 3D data. In addition to point cloud
segmentation and clustering, we also run a stereo blob
tracker that computes positions of buoys in 3D space and a
feature extraction module that compares the current scene
with a set of templates to identify mission stations. The
sensing stage is described in detail in Section 3.1.
Our thinking as well as acting stage remains largely
unchanged from last years architecture, as we were able
to use most of our behavior-based controls architecture
and position and velocity control and estimation. Only the
mission-related behaviors and the finite-state machine -
our mission planning module - underwent a major redesign
(see Section 3.2 and Section 3.3).

3.1 Sensing

System Model and State Estimation Both the system
model and the state estimation modules could be reused

Fig. 10. Control Center

Georgia Tech ASDL 5



Georgia Institute of Technology Aerospace Systems Design Laboratory

Fig. 11. Hybrid-deliberative system architecture.

from last year. The dynamics of our boat are described
by a linearized system model around zero velocity. Even
though boat dynamics are inherently non-linear, we chose
a linearized approximation for ease of system identifica-
tion, observer, and control design. Also, we assume that at
low speeds, rotational and linear velocities are decoupled
and can be estimated and controlled independently.
For linear and rotational velocity estimation, we feed con-
ditioned and denoised sensor data into Kalman filters that
use the boat model and additional sensor noise character-
istics. These Kalman filters greatly improved our velocity
estimates through fusing data from the GPS and IMU sen-
sors. Position estimation is done in a similar fashion using
a Kalman filter that fuses GPS data and a dead reckoning
estimate based on our boat model and accelerometer data.

3D Sensing Our current boat features a tilting laser
range finder that allows us to generate three-dimensional
point clouds of the environment in a 270 degree horizontal
field of view and a tilt angle that can be changed at
runtime. The tilting LIDAR assembly contains a SICK
LMS 111 laser range finder and a Dynamixel AX12 servo
to move the LIDAR. Since LIDAR data is technically
just an array of ranges corresponding to the horizontal
field of view, we first have to project each ‘slice‘ into the
boat’s coordinate frame and then into a fixed global frame.
These transformations depend on the current servo angle
associated with each LIDAR slice and the current state of
the boat, i.e. its orientation and position in 3D space. A
point cloud is generated for each ‘sweep‘, i.e. all slices that
are measured while the servo moves through its current
angular range once. The resulting point cloud is roll, pitch,
yaw, and velocity compensated.
The transformation from the moving LIDAR frame into
the boat frame is done with a 3D rotation matrix using
the current tilt angle of the servo, which is published at
50 Hz. Since the boat changes its current state during
the measurement of one complete sweep, we have to
compensate for the motion of the boat. This compensation
is done using the roll, pitch, and yaw information from the
IMU as well as the change in position that is obtained from
the position estimator. A rigid body transform based on

the changes in the boat state is then applied to each slice
to transform all points into a fixed coordinate frame.

Point Cloud Segmentation Point clouds contain a large
amount of data in the form of thousands of points from
which we need to extract useful information, i.e. clusters,
shapes, and features. This segmentation is done with the
help of the Point Cloud Library (PCL). In a first step,
we extract clusters of points together with their centroids,
bounding boxes, and covariances. We then run a shape
matching algorithm on each of these clusters, matching
primitive shapes provided by PCL into those clusters.
Currently, our algorithms can match spheres, cylinders,
and planes into clusters of points. All of these recognized
primitive shapes and also all clusters that could not
be matched with any shape are then GPS-tagged, i.e.
their global position is computed and stored. These GPS-
tagged objects can then be used in channel navigation
or camera-aided object recognition as explained in the
following section. We chose this approach of GPS-tagging
over SLAM because of its compatibility with our reactive
behavior-based control approach.

Camera-aided Object Recognition The robot features a
stereo camera system using two Microsoft Lifecam Studio
webcams mounted on the electrical box of our boat. This
setup results in a baseline between the cameras of 0.8
meters giving us a large field of view in which 3D infor-
mation is available. The calibration of the stereo vision
system, i.e. determining the intrinsic camera parameters
and rectification and projection matrices was done using
the camera calibration ROS package. In order to compute
3D information from a stereo vision system one needs to
associate pixels in the left image to pixels in the right
image. This is commonly done with a block matching
algorithm that is fast enough to run in real time. In our
experiments with the block matcher provided by OpenCV
though, the resulting 3D point cloud was too sparsely
populated. Therefore, we implemented the following two
algorithms to extract 3D information of objects from both
camera streams.

Georgia Tech ASDL 6



Georgia Institute of Technology Aerospace Systems Design Laboratory

3.1.4.1. Stereo Blob-tracking with automatic color calibra-
tion We employ a stereo blob tracking algorithm based
on the OpenCV computer vision library that is currently
able to track red, green, blue, and yellow objects to find the
corresponding buoys in the left and right camera frames
and compute their location in 3D space. Independent blob
tracking in both the left and the right image is necessary
because only then we can compute a disparity value be-
tween the same object in both frames and project the blob
from image coordinates into 3D coordinates. Disparity is
simply the distance in pixels of the origin of an object in
the left image and its origin in the right image. Therefore,
a matching is required. After our stereo blob tracker has
found blobs in both frames, we match buoys based on
distance (i.e. the L2-norm) in image coordinates. A blob in
the left image and the closest blob in image coordinates in
the right image are assumed to be the same blob and allow
us to compute a disparity value. The image coordinates
together with the disparity enable us to project a blob
into 3D space and compute the 3D location of each blob.
One inherent problem with blob tracking in an outdoor en-
vironment and outdoor computer vision in general though
is how easily it is disturbed by changing lighting condi-
tions, reflections, and glare. Specifically color values in the
RGB color space that we use change significantly as light-
ing conditions or reflections change. To make our vision
system more robust to these disturbances we implemented
an automatic color calibration algorithm. It is based on
the assumption that we know the color of a specific region
in the image. We therefore place colored blocks showing
all the colors that we want our robot to be able to detect
(currently red, blue, green, and yellow) directly in front
of each camera. The blob tracking algorithm continuously
reads the color values of the corresponding pixels and
adjusts the thresholds it uses for detecting colors.

3.1.4.2. Template matching In addition to tracking col-
ored blobs, the successful completion of missions requires
a method of recognizing mission stations. We chose an ap-
proach that combines point cloud segmentation and tem-
plate matching. Specifically, we feed distances and sizes of
objects retrieved from the point cloud segmentation into
the template matching module. These objects are then
projected into the current camera image to constrain the
search space for the template matching algorithm. The
template matcher then extracts local feature descriptors
from both the template and the current object in the image
and computes a confidence level of the match. Specifically,
we use SURF (Speeded Up Robust Features, see Bay
et al. [2006]) feature descriptors that are supported in
the OpenCV computer vision library. The main advantage
of SURF features is that they are scale- and rotation-
invariant allowing the template matcher to recognize a
match from any angle and distance. Additionally, this
approach simplifies the creation of templates significantly,
since a template is simply a cropped camera image of the
mission stations.

3.2 Thinking

This stage combines all the sensory inputs through be-
haviors and generates motor commands to feed into the
acting stage. We employ a behavior-based architecture

using individual behaviors, a DAMN arbiter that generates
target positions based on the behaviors, and high-level
control realized as a finite state machine.

Finite State Machine Our high level control - or mission
planner - is realized as a finite state machine that controls
the weight of each behavior and therefore its influence
on the target position in the DAMN arbiter. By setting
weights to zero, it can also dynamically deactivate behav-
iors. All behaviors run continuously all the time - each as
its own process - but just compute vote matrices if their
weight is not set to zero. The transitions from one state to
another are based on the detection of objects such as the
blue buoy marking the end of the channel or any mission
station. Additionally, the mission planner ensures that the
boat always remains in a defined state and never gets stuck
in an obstacle or attempting a task.

DAMN Arbiter The DAMN arbiter sole purpose is to
combine the vote matrices of all behaviors and compute
a local target position that it feeds into the position
controller. The local coordinate frame is centered about
the robot and uses a discretized polar coordinate system.
128 evenly spaced radial lines extending from the origin
and 8 concentric circles centered about the origin ranging
in distance from 0 meters to 8 meters result in a total
of 1024 local target positions each behavior can vote for.
Votes range from -1 to 1 where a 1 corresponds to a highly
beneficial choice for a behavior and -1 for a detrimental
choice. The DAMN arbiter computes a weighted sum of
all vote matrices and choses the vote matrix element with
the highest vote as its target position. The radii of the
circles grow exponentially since precise control of the boat
requires a higher resolution closer to the boat rather than
further away.

Behaviors As mentioned before, all behaviors run si-
multaneously on the boat. Yet, the finite state machine

Fig. 12. Example of a matched template of the cheater’s
hand

Georgia Tech ASDL 7



Georgia Institute of Technology Aerospace Systems Design Laboratory

(a) Point cloud generated with the tilting LIDAR (b) Left camera image with tracked
blobs indicated by bounding boxes

(c) Right camera image with tracked
blobs indicated by bounding boxes

Fig. 13. 3D sensor data from both the tilting LIDAR and the stereo camera system with active blob tracking

determines, whether a behavior outputs a vote matrix or
not, thus dynamically switching those behaviors on that
are required for the current mission mode.

3.2.3.1. Obstacle Avoidance This reactive behavior de-
termines how far the boat can move in each direction
without colliding with any obstacles. It relies on sensor
data from the laser scanner and is augmented by detected
objects from point cloud segmentation. In order to take the
boat’s finite dimensions into account, this behavior also
has to grow obstacles. The growth of obstacles depends on
the length and width of the boat as well as on the distance
to an obstacle. This dynamic growing and shrinking of
obstacles makes the robot turn and react faster to closer
obstacles. This behavior treats the robot as a rectangle
with non-holonomic properties, i.e. that it can only drive
in the forward direction. Also, this behavior is always given
the highest weight, since it is most important that the
boat does not run into obstacles and therefore does not
get stuck.

3.2.3.2. Channel Navigation The channel navigation
behavior combines input from the tilting LIDAR, the
segmented point clusters and detected objects, as well as
from the stereo cameras. The point cloud generated by the

Fig. 14. Vote matrix visualization.

LIDAR is segmented into disconnected clusters with algo-
rithms from the Point Cloud Library. We then apply basic
shape recognition to those clusters, determining whether a
cluster represents a plane, sphere or cylinder. Since LIDAR
can’t detect the color of objects, we have to augment
these objects with color information from our stereo vision
system. Therefore, we project the origin of each cluster into
the camera image space and determine the color of each
object in the image. This of course, requires calibrated
stereo cameras as outlined in section 3.1. Once we have
detected buoys (i.e. spherical or cylindrical red and green
objects), we apply multiple behaviors to generate the next
waypoint. In order to increase robustness of our channel
navigation behavior, we combine three behaviors. The first
picks the closest buoy pair and generates a waypoint be-
tween that pair. The second behavior computes the center
of gravity of all found buoys. And the third behavior tries
to identify two buoys of the same color and computes a
channel direction. A waypoint is then generated such that
the boats direction aligns with the channel direction.

3.2.3.3. Go to Waypoint The go to waypoint behavior
allows us to manoeuvre the boat to a waypoint in the local
or global frame of reference. Therefore we can, for example,
command the boat to move four meters forward or drive to
a point with given latitude or longitude. The go to local
waypoint behavior builds on the go to global waypoint
behavior as it computes the global coordinates of the local
waypoint given the boats position estimate and sends it to
the go to global behavior. Go to global waypoint will also
serve as a hold position behavior, as simply setting the
waypoint to the current position will stop the boat from
moving and only allow heading corrections.

3.2.3.4. Hold and Follow Heading The only difference
between hold and follow heading is that hold headings
highest vote is set to the innermost circle of the vote matrix
and therefore only results in a rotational velocity command
whereas follow heading also adds a linear velocity compo-
nent. Both of these behaviors will be used in accomplishing
mission tasks and the channel navigation. Follow heading
will allow us to direct the boat to mission stations given
the heading to each station from the end of the channel.
Hold heading on the other hand will allow us to lock the
boat’s orientation such that it will face the mission station
during an attempt to complete a mission.

Georgia Tech ASDL 8



Georgia Institute of Technology Aerospace Systems Design Laboratory

3.2.3.5. Mission Behaviors Mission behaviors build
upon the previously outlined fundamental behaviors and
our 3D sensing capabilities.

The cheater’s hand, the challenge of shooting the water
gun at a target will be accomplished through a combina-
tion of the hold position and hold heading behavior, where
the desired heading will change in such a way that the
water stream sweeps across the cheater’s hand sign until
the raised flag indicating the completion of this station is
detected.

For the jackpot challenge that requires the boat to push
a button we will deactivate the obstacle avoidance and
combine a follow heading behavior with visual blob track-
ing and a behavior that detects the impact of pushing the
button. This combination of behaviors is similar to what’s
called visual servoing in the literature since information
from the vision system of the boat will control its motion
(see for example Hutchinson et al. [1996]).

For the hot suite challenge and reporting the hot target we
employ both our template matcher and the infrared sensor
mounted on our tilting LIDAR mount. Once the boat is
holding its position in front of all four hot suite signs,
it will rotate in place until it has template matched and
measured the temperature of all targets with our thermal
infrared temperature sensor. The hottest target will then
be reported.

The poker chip challenge requires the boat to dock and
deploy a subsystem to retrieve a poker chip from the dock.
Again, it will use template matching to identify the dock
and its orientation and hold its position in front of the
dock. Since our subsystem is located at the rear end of our
vessel, it has to rotate in place by 180 degrees and then
deploy our subsystem - a six-legged walker. This hexapod
runs the low-level control (i.e. inverse kinematics to control
its legs and a gait control) onboard, while its directed to
its target by the boat and its vision system.

3.3 Acting

Just as the position and velocity estimation, we were able
to reuse our position and velocity controllers from last
year. As mentioned in Macdonald et al. [2011], we use two
PID control loops, one for linear and one for rotational
velocity and a non-holonomic position controller. We chose
this type of position controller because our boat can be
treated as a “unicycle” type robot, which means that it
can only have a linear velocity in the direction it is facing
but also rotate around its center. The position controller
therefore has to determine desired linear and rotational
velocities based on the desired target positions according
to the non-holonomic controller proposed by Olfati-Saber
[2002]. These desired velocities are then fed into the two
velocity PID control loops. The complete block diagram of
our controls architecture including the Kalman filter-based
velocity estimators are shown in Fig. 15.

4. CONCLUSIONS

The Georgia Tech Marine Robotics Group (GTMRG) boat
went through a total overhaul not only in mechanical
design but mostly in algorithm and software design. The

hull as well as the electronics box has been rebuilt out
of lighter materials based on last year’s design and the
wiring has been improved with a focus on simplicity and
reliability. Additionally we have added a solar-powered
cooling system for the electronics box to keep the main
computer system cool even under the heavy load generated
by processing all incoming sensor data in real time, includ-
ing 3D point cloud generation and stereo image processing.
Our main achievement on the software side was the porting
of our entire codebase of GTMRG’s participation in the
2011 competition to ROS and the use of the 3D simulator
Gazebo. This approach allowed us to test most of our
developed software in simulation before uploading it to
the boat and testing it on the hardware.
Lastly the algorithms developed and used provide means
of state estimation and object detection and recognition
based on point cloud clustering and stereo blob tracking.
Additionally, we have implemented template matching al-
gorithms that will allow the boat to identify each mission
station and a variety of objects necessary to complete every
task in the 2012 AUVSI Roboboat competition.

REFERENCES

Herbert Bay, Tinne Tuytelaars, and Luc Van Gool. Surf:
Speeded-up robust features. In 9th European Conference
on Computer Vision, Graz, Austria, 2006.

George A. Bekey. Autonomous Robots: From Biological
Inspiration to Implementation and Control (Intelligent
Robotics and Autonomous Agents). The MIT Press,
June 2005. ISBN 0262025787.

R. Brooks. A robust layered control system for a mo-
bile robot. Robotics and Automation, IEEE Journal
of, 2(1):14 – 23, mar 1986. ISSN 0882-4967. doi:
10.1109/JRA.1986.1087032.

S. Hutchinson, G. Hager, and P. Corke. A tutorial on
visual servo control. IEEE Trans. on Robotics and
Automation, 12(5):651–670, October 1996.

N. Koenig and A. Howard. Design and use paradigms
for gazebo, an open-source multi-robot simulator. In
Intelligent Robots and Systems, 2004. (IROS 2004).
Proceedings. 2004 IEEE/RSJ International Conference
on, volume 3, pages 2149 – 2154 vol.3, sept.-2 oct. 2004.
doi: 10.1109/IROS.2004.1389727.

E. Macdonald, P. Dillon, C. Taylor, S. Culpep-
per, and D. Moroniti. Georgia insti-
tute of technology, May 2011. URL
http://mrg.gatech.edu/wordpress/wp-content/up
loads/2012/03/Georgia-Tech-ASDL-2011-Journal-
Paper.pdf.

R. Olfati-Saber. Near-identity diffeomorphisms and expo-
nential epsilon-tracking and epsilon-stabilization of first-
order nonholonomic se(2) vehicles. In Proceeding of the
2002 American Control Conference, May 2002.

Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust,
Tully B. Foote, Jeremy Leibs, Rob Wheeler, and An-
drew Y. Ng. Ros: an open-source robot operating
system. In ICRA Workshop on Open Source Software,
2009.

Julio Rosenblatt. DAMN: A Distributed Architecture for
Mobile Navigation. PhD thesis, Robotics Institute,
Carnegie Mellon University, Pittsburgh, PA, January
1997.

Georgia Tech ASDL 9



Georgia Institute of Technology Aerospace Systems Design Laboratory

Fig. 15. Control architecture.

Georgia Tech ASDL 10


